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Proof. Let n be a positive int
the statement that n(> 1)
product of primes,
P(2) is true, since 2 is a Prime.
Let us assume that P(n)
such that 2<n <k

If £ + 1 be itself a primé then P(k + 1)

princi‘ple of induction, P(n) is true for all positive integers n > 1. .
If k+1 be not a prime then it is a composite number. Let k+1 = rs
where 7, s are integers with2<r<k+1,2<s<k+1. :
By induction hypothesis, P(r) and P(s) are both true. Then
T = P1P2...p; Where p1,p,,...,p; are primes, i > 1;
8§ = q142....q; wWhere q1,q3,... yg; -are primes, j > 1.
Thus k + 1 is expréssed as the product of primes and P(k + 1) is

proved to be true. By the second principle of induction p(n) is true for .
all positive integers n > 1.

.Hence the first part of the theorem is established.

Integer. Eithern=1orn > 1. Let P(n) be
18 either a prime, or it can be expressed as a

1s true for all n, where 7 is a positive integer

is true and by the second

In order to prove uniqueness of the representation, let us assume

that n = p1p2...pk = q192 ... ¢m, where p; and g; are all primes.
Since p; | n, it follows that p; | q1g2. .. gm.

Since p; is a prime, p; | g~ for some r where 1 < r < m. But since
p1 and g, are both primes, p; = g, _

We obtain  p2pa...pr =q192.. - Gr—1Gr+1 .. -dm.

We repeat the argument with p2 and obtain p; = g, for some s where
1< s<m,s#r. Then

P3Pa---Pk'= q192 - Gr-19r+1 - Gs—19s+1 - - - Gm. _
If k¥ < m, then after k steps the left hand side reduces to 1 apd the

right hand side becomes the product of m —k ¢’s, each of which is a
prime. This cannot happen. Therefore k > m. . _

If k> m, then after m steps the right hand side reduces to 1 an.d
the left hand side becomes the product of K —m p’s, each of which is

. & prime. This cannot happen. Therefore k£ < m. o

Hence k = m and the products pip2...Pm,q1G2 - - gk give the same
representation except for the order of the factors. . |

Thus n(> 1) is expressed as the product of a number of primes, the
representation being unique except for the order of the factors. O .
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Note. In the app]ication of the fundamental theorenmy we wihto nny
integer n(> 1) in the form, called the canonical form,

n = pIQIPQQQ R Pra"q
< v < ppe aud the

where the primes p; are distinct with p; < py <
exponents a; are positive.
An integer is said to be square-free if no a; in the canonical form of
n is greater than 1.
To illustrate the representstion, let us take n = 210, 3150.
210 = 2.3.5.7, 3150 =2.3.3.3.5.7= 23257
Here 210 is square free.
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then the part (i) of the theorem states that a o (bxc) = (ao b) s
for ¢,b € N and the part (ii) of the theorem states that 4 * (b *(a Gog |
(axb) o (axc) for a,b € N. °¢) <

~

130

These establish that the operation o is distributive over the o
* and the operation % xs distributive over the operatmn o. peration ‘

Worked Example.

1. If p be a prime, show that ,/p is not a rational number,

Since p is a prime, p is an integer > 2 and therefore vE>1 o, |
. Let /p be a rational number. 'I‘hen VP = 2 for some n‘dﬁural E
numbers m,n. We assert that m > 1 and n > 1, because :
=1and n=1=p=1% =1, a contradiction |
m>landn=1=p=mm and therefore p is not ‘dprlme i
coutradlctlon |
=1and n> 1= .,/p <1, a contradiction. ' |
Therefore m > 1and n > 1. We also have pn® = m2. The number
of primes in the factorisation of m being unique by the fundamentg] |
theorem of arithmetic, it follows that the number of primes (counting
, multlphcu:y) in the factorisation of m? is ‘always even. |
Similarly, the number of primes in the factorisation of n? is also
even. Therefore the number of primes in the factorisation of pn? is odd |
(since p is a pnme)

Since pn? = m?, it appears.that the same integer m? is expressed o |
the product of an odd number of primes in one representation and as |
the product of an even number of primes in another representation.

This contradicts uniqueness of the number of prime factors in the
decompostion.

We conclude that ,/p is not a rational number

Theorem 3.3.8. (Euclid). The number of primes is infinite. |

Proof. 'We prove the theorem by contradiction.

Let us suppose that the number of primes is finite and let p be the

greatest prime. We. write the primes 2,3,5,7,... in succession and p
the last in the enumeration.

The product 2.3.5 . .P in which every prime appears only once 1?
divisible by each prime and therefore the number (2.3.5...p) +1 g
divisible by any of the primes 2,3, 5,.

Hence this number is either 1tself a o

) mpO
AR prime, or being a €O
number, is divisible by a prime number & ] g

eater than p. In both the ¢
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p fails to be the greatest prime and therefore the number of primes is
inﬁnite. D ] t .

Note. Alt.hou_gh the number of primes is infinite, there are arbitrarily -
large gaps in the sequence of primes. For every positive integer k, there

exist k consecutive composite numbers. To be explicit, each of the k
consecutive integers

(B+1)1+2,(k+1)1+3,...,(k+ 1)l + (k+1)

is composite, because (k + 1)! + 7 is divisible by rif 2 < r < k + 1.

This indicates that the primes are irregularly spaced in the sequence
of positive integers. The number of primes less than a positive integer
z is denoted by m(z). No simple formula for determining n(z) has yet
been found.

“Test for primality.

If a positive integer a be composite, then a = bc for integers b, c
satisfying 1 < b < a,1 <c< a. Let b <c. Then b? < bc = a and this
implies b < /a. -

Since b > 1, b has at least one prime divisor p and p < b < /a.

In testing primality of a positive integer n, it is sufficient to divide
. by primes not exceeding /n. ‘

Greek mathematician, Eratosthenes (276- 494 B.C.) utilised this
concept to find all primes less than a given positive integer n. His
device-is called the ” seive of Eratosthenes ” which consists in writing
all integers from 2 to 7 in natural order and then striking out all mul-
tiples 2p, 3p, 4p, 5p, . .. of all primes p < y/n. The integers that are left
in the list ( survived the seive ) are primes. ‘

For example, in order to determine all primes < 30, the ”sieve”
method is applied by striking all multiples of 2,3,5 from the table of
integers from 2 to 30, since 5 is the largest prime < +/30.

The table is shown below.

2 3 4 5 £ 7 & £ 0 11 ¥ 13 14 15
W17 18 19 20 21 22 23 24 28 26 27 28 29 39

This method has limitations. If the positive integer n be sufficiently
large, the method becomes impracticable.

With the aid of other theorems and with the aid of computers, many
mathematicians in recent years have prepared extensive tables of primes.
But still the problem of determining all primes by some formula remains
Open.
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3.9. The number of positive divisors of a POsitiye "
3.’ e

Let n be a positive Integer greater th.an 1. Then ncanpg t
;__ P1ePa®2 . .py%r, where the primes p; are distine ¥
aﬂs i —

Wi Dr@gsed
< .-+ < pe and the exponents o;-are all positive. Whyy
pp< it A

p TR

=+ N
If m be a positive divisor of n then m is of the form;plulpz;ug_ G
L0<u <a,. RS

where 0 < u; < a0 <ug <,y
Thus the positive divisors of n are in one-to-one Corres‘pondenc
: et
the totality of r-tuples (w1, ug, - - -y Ur), Where 0 < uy < o 8 iy
S S Qo Lo u2 <
aﬁa'--so_ur.__-v ‘

The number of such r-tuples is (1 +1){aa + 1)+ (a, 4 1),
Hence the total number of positive divisors of n is (q 4 1)
24
1) (o +1). .
If n = 1, then there is only one positive divisor.

Note. The total number of positive divisors (1 +1)(ag +1). .. (
include both the divisors 1 and n.

Q’r‘H)
Definition. The number of positive divisors of a positive integey ni
denoted by 7(n). (tau n)
If the canonical form of & positive integer n(> 1) be
n=m¥p*...p,
then 7(n) = (@1 + 1)@ + 1)+ (o +1); and 7(1) = 1.

For example, 7(48) = 7(2* 3) = (4 + 1)(1 + 1) = 10.

Theorem 3.3.10. The total number of positive divisors of a positiv
integer n is odd if and only if n is a perfect square.

Proof. Let n(> 1) be a perfect square and let the canonical form ofn

be n=p %P2 p % where p; < py < -+ < p, and o arcal
positive.

Then each of v, ,...,q, is an even integer and 7(n) = (m+
L)(og +1) - (a, +1) is odd.

If however, n = 1, a perfect square, then 7(n) = 1 and it is odd:

Conversely, let (a; + (g +1)-..
factors iy + 1, a5 4 1, ,
Q1,00,..

(ctr +1) be odd. Then each of
-y @+ 1 must be odd. Consequently, each !
+»Qr MUSt be even and 7 is therefore g perfect square.

This completes the proof,
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3.3.11. The sum of all positive divisors of a positive integer.

Let n be a positive integer greater than 1. T
« BETT . -Pr*", wh
;2<,,.<p,.anda,->0.

Every positive divisor of n is a term in the product
o

(1+ P +P¥+""*‘P‘f‘)(l+p2+---+p22)...(1 +Pr+"'+P,°-"')
and conversely, each term in the product is a divisor of n.
Hence the sum of all positive divisors of n
= (14+p1+Pi+ - +p) (14py+p2+- +p33) ..
p?l-“--l Ezz-iﬂ_l . 0r+1_1
=1 " p,—1 pr—1 °
IIn=1, the sum =].

hen n can be expressed
ere the primes p; are distinet with py <

- (I+pr+p2+- - +p2r)

Definition. The sum of al]
denoted by o(n). (sigma n).

. If the canonical form of g positive inte
= piFipy®a P

positive divisors of a positive integer n is

ger n(> 1) be

b

xfa =1 pp 1 T oguefiln L
then o(n) = R I e B =1 s and o(1) =1, |

Definition. A function whose doma
said to be a number-theoretic functi
range of a number-theoretic functj
integers. We shall encounter som
which assume positive integral val

in is the set of all positive integers is
on (or an arithmetic function). The
on need not be the set of all positive

€ simple number-theoretic functions
ues.

The functions + and o are examples of number-
A number-theoretic function
f(m)f(n) for all integers m,n s

Theorem 3.3.12. The functions 7 and o are both multiplicative func-
tions,

theoretic functions.

f is said to be multiplicative if f (mn) =
uch that m,n are prime to each other.

Proof. Let m,n be relativel
7(mn)
We agg

Y prime integers.
= 7(m)7(n) holds trivially if either m or n is 1.
ume m > 1 and n > 1.
Let- T = 'plal
where by q5
Since m,

P2®% ...p.o and n = qP1g,P . qsPe,
are primes and o; > 1, 8; > 1.
™ are relativey prime, each p;
Therefore
Mn = plax

S

is different from each q;.
the prime factorisation of mn is
p2a2 ey prarqlﬁl qzﬁﬂ Wy qsﬁl 2



r(mn) = (a1 + Dozt 1) (@r +DBHD)(By + 1), (8
= r(m)r(n). | Bty
ap+1 ag+l artl_q P11 B2t

-1 p°" -1 . T ) q L
a'(nm)-'-pl —, - : 1

“"m-1 ' p-l pr—1l " qi-1 Jﬁ Qﬂnﬂ\l
:.‘O'(m)O'(n)- ' ' ! q"\ll

Hence T and o are multiplicative functions.

Definition. Perfect number. A positive integer n ig g,; d g

perfect number if o(n ) = 2n, ie, if n be the sum of a]] to bg "

divisors excluding itself. | OSitjy,
For example, 6 is a perfect number. 28 is another.

Worked Examples.
1. Find 7(360) and o(360). |
360 = 28.32.5. Therefore 7(360) = (1+3).(1+2).(1+1) = 94
| o(360) = 221 E=1 81 - 15136 = 1170,
" 9. Find thé number of odd positive divisors of 2700.

9700 = 92.3.5%. Every positive divisor of 2700 is of the fory
2"‘l 322 523 where 0 < a3 <2,0< a2 <3,0< a3 < 2.

" Therefore each term in the product (142 + 2%) (1+3 + 32 4 (14
5 oF 52) is a positive divisor of 2700 and conversely.

The odd positive divisors of 2700 are given by the terms of the
product 1.(1+3 4 3%+ 3%)(1 + 5+ 5%).

The number of odd positive divisors are (3 +1)(2 + 1), i.e.,12.
3. Find the sum of all even positive divisors of 2700.

From the previous example it follows that the even positive divisors
of 2700 are given by the different terms of the product -
(242%)(1 43+ 3%+ 3%)(1 + 5 4 52).
The sum of the even positive divisors
= (2422)(1+3+3? 4 39)(1 4 5 + 52)= 6.40.31 = 7440
4..Let k> 1and 2° -1 is a prime, If n = 2%-1(2% — 1) then sho¥ the
n is a perfect number,

2% — 1 is an odd prime, say p. | b

. eal
a(n) = o(2~1p) = g(2k-1)q (p), since 2%~1 and p are prime 80°
other. '

OB =1 424P 449 b ] and (p) = 1 +P

* Therefore o(n) = (2F - 1)1+ p) = (2% - 1)2F = 2n.
‘This proves that n is a perfect number.
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. This example shows that if 2" — 1 (n > 1) is a prime, then-thc?

Note: on—1(2" —.1) is a perfect number.

er __ .
& qumbers of the form M, = 2% —1 (n > 1) are called Mersgnns
Ther <. named: after Mé_rsen'Pe (1588-1648 ), a French mox;lg and a

nu“;‘;: ’Of mbthematics. . _ ’

pl imality of My requires n must be a prime. ¢
Th;dprbe o, prime then M, is called a Mersenne prime apd in that.
B fect number 2n—1(2n — 1) is obtained.

., dx be the list of all positive divisors of a positive integer .

day -

5-1Ed1’ ! : 1 1 on .
ﬂprovetha-t- %+E;+"'+3:—-J—ln . :
) 3

; is a./p/ositi\}e divisor =-_7- is also a positive divisog.' As d runs
through the set of all positive divisors of n, % also does so.
~ Therefore o T =+ s o =d1+da+-e- + dr=0c(n)

L e e en)
.c.)r,/*d‘l—-l/'l"g;*i- + -

n



l.

1, ﬁse the prmaple of mductlon to prove that
(i) 1+3+5+ +(2n—-1)—-n for all nGN
i) L2204+l = (n+1)! -1 for all n € N,
(i) g2n-1 4 gn+1 jg djvisible by 7 for all neN,
(iv) 34"+2 £ 527+ is divisible by 14 for all n € N,
(v) 10”"'1 +10™ + 1 is divisible by 3 for-alln € N,
(vi) 2.7 T 3.5" -5 is dlws:ble by 24 for aH n /G N.
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3.4. Congruence- ; _Ecelebmted i

o o 50 S o
zheory of numbers.

‘positive integer. Two inte

; me7bz: ﬂa';ofii;;jj TIIJZ-:if a=>b is divisible by m, E;;zbo(')l?nd b
b(mod m). call,
3 Tt is easy to verify that
mod 3),6 = 0(mod 3),35 = 2 (mod 3).

gy

cian, int Bation

modern

Definition. Le
are said to be congrt
this is expressed as 8 =
To illustrate, let m =
1 = 4(mod 3),—2 = 1
When a — b is not divisible by m,a is said to be incongruem :
modulo m. It is expressed as @ £ b(mod m). b
For example, 1 # 5(mod 3),—2 £ 2(mod 3).
Note. When m = 1, every two integers are congruent modulo y, g
this case is not so useful and interesting. Therefore m is usually ¢ ke
to be a positive integer greater than 1. ‘

Theorem 3.4.1. For any two integers a and b,a = b(mod m) if gy
only if a and b leave the same remainder when divided by m.

" Proof. Let r be the remainder when a is divided by m. Then ther
exists some integer g such that a =gm +7,0 <7 <m. -
~ Since a = b(mod m),a — b= km where k is an integer.

Thereforeb=a—km = (¢gm+71)—km
= (g—k)m+r
‘and this shows that b leaves the same remainder 7.

C’qnversely, let 7 be the same remainder when a and b are divided by m.

Then a = qym+7,b = gym+r, where q;, g, are integers and 0 < 7 <M
hTherefore (a—5) = (¢ — go)m, i.e., m | @ — b and this proves the!

a=b(mod m). O ‘

21 aTx?dinufzmte’ let-m = 5. Since 21 = 4.5+ 1 and —14 = -35+}
d —14 leave the same remainder upon division by 5. Thereforé

21 = -14(mod 5),

| Properties, .

1. o= a(mod m).
/

2. Ifg= =
: Ii @ = b(mod m) then b = a(mod m)
" HMe=h(mod m) b= | = m
(mod )b c(mod M) then q = ¢ (mod m).
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= b (mod m) then for any integer ¢
atc b+ ¢ (mod m)
ac be (mod m).

fazb (mod m) and ¢ = d (mod m) then
i a-+c b+ d (mod m)
ac bd (mod m).

. o= b (mod m) and d|m,d > 0, then a = b(mod d).

A If a

i

i

Proofs of properties 1 — 4 and 6 are immediate.

proof. 5. 6 = b (mod m)=a — b = km and
c=d (mod m)= ¢ — d = Im, where k, are integers.
(a+c)— (b+d) = (k+1Dm.

Therefore a + ¢ = b+ d (mod m) since k+ 1 is an integer.

By property 4,
a=b (mod m)=> ac = bc (mod m) and
¢=d (mod m)=- bc = bd (mod m).

Therefore @ = b (mod m) and ¢ = d (mod m)= ac = bd (mod m).

Definition. If @ = b (mod m) then b is said to be a residue of a
- modulo m. _
. By division algorithm there exist integers g and r satisfying a =
mt+rwith0<r <m — 1.
Since a—r = gm, a = r (mod m) and this shows that r is a residue of

- tmodulo m. 7 is said to be the least non-negative residue of a modulo
i m. ~

Let a be an arbitrary integer. Upon division by m, a leaves one and
aly one of the integers 0,1,2,...,m — 1 as the remainder.
71 r%i'(li‘hemforé whatever the integer a may be, the least non-negative
. Weof g is one and only one of 0,1,2,...,m — 1.

‘a sﬁtsThe whole set of integers is divided into m distinct and disjoint sub-

b » Called the residue: classes modulo m, denoted by 0,1,2,- -, m — 1
nd deﬁned by
(q].‘:_ {01 :I:m, izm’ - .}

l=
‘:{2,2:}:77&,2:*:2771,...}
\"' e .
m <
'={m—-1,0n—1)+£m, (m—1)*=2m,..}.
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5 residue ¢lass are congruent modylg ’
twor different residue classes are im ang,
ncon&l“ueny |

g |

‘ fOr L

g |

positive integers 1. : :
Proof. We use the principle of induction to-prove the theorep,

The theorem is
Let us assume that

Then ot = b¥(mod m).
Now af = b¥(mod m) and 0 = b(mod m) together imply that
o ghtl = prtl(mod m).

ok g = bF.b(mod m), 1€
This shows that the thoerem is true for the positive integer k11
' 1

we assume it t0 be true for k:
By the principle of induction,
integers n. O

Note. The convers
2% = b¥(mod m)

troe forn=1. |
the theorem is true for some positive i |
‘J Dteger j,

the theorem is true for all positiy
\ . ()

o of the theorem fails to hold. :
does not necessarily imply a = b(mod m).

7%( mod 8) but 9 2 7( mod 8)
73( mod 9) but 4 7 7( mod 9).

s = ay( mod m) and a is prim

For example, 9
43

o

Theorem 3.4.3. If a e to m then
g =y(mod m).

Proof. ez — 0y = km, where k is an integer
km

or,T—Yy="5

Since & — ¥ is an integer, a | km. Since a is

it follows that a | k. Therefore k = ag where ¢ is an inte
Hence z — y = gm and this proves the theorem.

prime to M and a | kM
ger.

Note. az = ay(mod m) does not necessarily imply & = y(mod m)
For example, 3.2 = 3.4(mod 6) does not imply 2= 4(mod'6)'

We can cancel the common factor a freely from poth sides of ¥

congruence (mod m) provided a is prime to m. £
é. -2 HE 2(mod 8), 3.14 =2(mod 8) | B |
ancelling the factor 3 which is pri i ot &
gruence —2 = 14(mod 8). which is prime to 8 we £et the £
s b
Cancellation is allowed however, in some restricted 5ense B2

provided in the following theorem

et
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m 34.4. It d = ged(a,m) then g = ay(mod m) & T =Y

We have aT — AY = gm where q is an integer :

f pre¢ ce QCd(a’ m) =d, a = dr and ™M = ds where r and s are integers

vn .
o 1o each other.

o ime drz — dry =
| M Therﬁfor ¥y=24q or, r —y = g;a

o i S in Y > 13 . .
gnce T — ¥ 15 a0 teger, 1 | gs. r is prime to s and 7 | gs implies

™ g is an integer k.

rlqu’,herefore x —y = ks and this says y = y (mod Z).
ponversely, & =Y (mod %) = 2 | (- y) > m | d(z—y) =
;y;la(:U' y) = az = ay (mod m).

rollary: If az = ay(mod m) and a | m then z = y (mod ).

For example, 4.7 = 4.10 (mod 6). Cancellation of 4 from both sides
does 1Ot give a correct congruence because 4 is not prime to 6. Since
(4 6) = 2, we get the correct congruence 7 =10 (mod 3).

ain, 4.7 = 4.10 (mod 12). Since 4 | 12, we get the correct congru-.
ence 7 = 10 (mod 3) from the corollary.

Co

Theorem 3.4.5. =y (mod m;), for i = 1,2,...,r &z =y (mod

m), where m = [m1,me, ..., m;], the Le.m. of my, ma,,..,m,.
Proof. £ =y (mod m;) = m; | (z—y), fori=12,...,7
— ¢ — y is a common multiple of m,ma,...,Mr
= [ml,mg,...,mr] l (a:—y)

= z =y (mod m).

Conversely, z = y (mod m) = m | (z —y)
= mimsg ... M | (& —Y)
=m; | (x—y), fori=12,...,7
— z =y (mod m;), fori=1,2....,7

Corollary. If z = y (mod mi1), T = ¥ (mod m2) and m, M are

relatively prime then z = ¥ (mod myimsa).

Theorem 3.4.6. Let f(x) = anz™ + An-1Z""
polynomial with integral coefficients a;.

fo=b (mod m) then fla) = f(b) (mod m).
Proof, Since @ = b (mod m), oF = b¥ (mod m) where kisa positive
Meger, Therefore a;af = a; b* (mod m), where a; 1 an integer.

Adding these congruences for i =0, 1,2,0005M WE have .

%+ 610+ apg? + - - - + An@" = ao + a1b+agb® +- - +and (mod m)

o, f(a) = f(b) (mod m). O

L4 .o. 4+ a1+ ap be a
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3.4.7. Divisibility tests.

1. Letn=anl0™+an 110" 4+ '+a2102+‘1110«+00 Whey

integers and 0 < ai < 9,k'=0, 1,...,m be the decimg] reDres: Uy
of a positive integer n. . I?tﬂtiqn
LetS=aptamt - tamT =t =01t 4 (~1ymg
X

(i) n is divisible by 2 if and only if ag is divisible by 2.
(i) n is divisible by 9 if and only if § is divisible by 9;
(iii) n is divisible by 11 if and only if T is divisible by 11..

Proof. Let us consider the polynomial |
F(z) = 4™ + @1 ™ F -+ 01T + ap.
(i) We have 10 = O(mod 2). .
Therefore f(10) = f(0)(mod 2).
But f(10) =n and f(0) = ao.
Therefore n — ag is divisible by 2.
Hence n is divisible by 2 if and only if ao is divisible by 2.
(i) We have 10 = 1(mod 9).
Therefore f(10) = f(1)(mod 9).
But f(10)=n and f(1) =S.
Therefore n = S(mod 9).
This proves that N — S is divisible by 9.
Hence n-is divisible by 9 if and only if S is divisible by 9.
(iii) We have 10 = -1(mod 11). ‘
Therefore f(10) = f(~1)(mod 11).
But f(10)=n and f(-1)=T.
Therefore n = T'(mod 11),
This proves that n — T is divisible by 11.

Hence n is divisible by 11 if and only if T is divisible by 11.

For example, 35078571 is divisible by 9 since the sum of the digit
‘3+5+0+7+8+5+7+1(= 36) is divisible by 9.

It is also divisible by 11 because the sum
1—7+5—8+7—0+5—3(=0)isdivisibleby 11. :

1 Tlrte ;mml:.)er 23572 i{s divisible by 2, since the integer a in the o
gicg f ; wl;lch is dlvmﬂ?le by 2. It is not divisible by 9, since e Slflp
Fa S-lklm-lz- 3(;—- 19) is not divisible by 9. It is not divisible by ]
2 ¥5=842(= ~1) is not, divisible by 11. |
a;; aﬁae‘i:nz =m0 4 am_l(‘l()()())m-l + -+ +a;(1000) + %0 e

P and 0oy SO0 k= ,1 e ho ropresed
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3 oSitvive integer . i
’ aLei: T=a—0+0~ +(-1)"q,  Thep.
' oo is divisible by 7 if and only if T is divisible by 7,
) is divisible by 13 if and only if T'is divisible By 13,
(iii) n is divisible by 11 if and only if T is di;risible by' 11.
et us consider the polynomial
f(@) =amZ™ + @m_12™ 1 ... 4 g2 + aq.
We have 1000 = —1(mod 7) since 1001 = 7.11.13.
_ Therefore f(1000) = f(~1)(mod 7).
gut f(1000) =7 and f(-1) =T.
- Therefore n = T'(mod 7).
This implies n — T is divisible by 7. | ‘

- proo. L

Hence 7 is divisible by 7 if and only if T is divisible by 7.
(ii) and (iii) Similar proofs.
To illustrate, let us consider the number n = 23146123. n C@T,l"c"e-

expressed as 23(1000)? + 146(1000) + 123.
n is divisible by 7 because the sum 123 — 146 + 23 = 0 is divisible -

by 7. : v
The same argument proves that n is also divisible by 13 and 11. '

Worked Examples.

ol Find the least positive residues in 3°°(mod 77).

3% = 4(mod 77) . |
Therefore 312 = 43( mod 77) = —13( mod 77).
This gives 324 = 169( mod 77) = 15( mod 77)

Therefore 336 15.— 13( mod 77) = 36( mod 77).
Hence the least positive residue is 36.

21'] Use the theory of congruences to prove that 7 | 25n+3 4 5273 for
W21, '
243 4 52n+3 _ g 39m 4 125.25™,
82" — 25" = O(mod 7) for all n 2 1.
Therefore 8.32" — 8.25™ = 0 (mod 7) for all n > 1.
Also we have 133(25)" = 0 (mod 7) for all n 2 1.
Therefore 8.32" + 125.25" = 0 (mod 7) for alln > 1.

Th_is implies 7 | 26713 + 52nt+3 for all n > 1.
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920 = 1(mod 181).
~1( mod 181), whenco
(__1)10( mod 181), by theorem 3.4,2

or, 19% 1( mod 181).
4. Prove that 3 4n+1 = 3(mod 9) for all positive integers .

3'4n+1 12.4" = 0.4" + 3.4"
3.4" 12471 = 0.471 - 3471

g, Prove that 1

We have 19?
1920

0w w

I

12.4 =94+ 34
12=9+3.
ol +4+42 4 +47)+3.

3.4%
3.4

Therefore 3.4"1! =
Hence 3.4™+! = 3(mod 9).
inder when 11+ 2!+ 3!+ -+ 50! is divided by 15
5! = 0(mod 15) and for any positive integer 7, (54n)! = 0(mod 15)
Therefore 11+ 2! 4+ 3 + -+ + 501 = (1! + 2! + 3! + 41) (mod 15). '
Now 11424314+ 4l =33 = 15.2 + 3.
This shows that 33 = 3(mod 15) and therefore
1142 + 3! 4 - -+ + 50! = 3(mod 15).

i

5. Find the rema

3.4.8. Linear congrueﬁce.

© Let f(z) = apz" + 015" 4+ + an(n > 1) be a polynomial with

integer cc‘>eﬁ"1c31ents ag,a1,. . . ,an With ag # 0( mod m). Then f(z) = 0

mod m) is sau':l to be a polynomial congruence (mod m) of degree .
If there exists an integer 7o such that f(zo) = 0( mod m), then

is said to be a solution of the congruence.
‘mod

By earlier theorems, if z; be any integer satisfying 1 = %o (
ther

m), then we also have f(z;) = ) ,
o 1) = 0( mod
solution of the congruence. ) = 0( mod m), showing that 27 15 819

obtg;ﬂgg xfbor;e sltl)lution be found then infinitely many solutions can be
e ;n uda these solutions belong to the same zg-residue class
T lml they are not counted as different solutions.
wo solutions zq. _ i
solutions if z :cg(l’moz do;{ (%) = 0( mod m) are said to be dis

Therefore, by the

Iy ) number of soluti we

mean the number of solutiong incongr?;jz; i:; ;Opgruence ( mod m)
azrs.

- For example, let us cop
18 a solution of the congru

tinct

Z?Gr the congruence 22 = 1( mod 8)- T 43 |
ce and all solutions congruent 0 (500 ¢



INTEGERS 145 -

e,z =1 { i & -
8), 1.6 + 8k, k being an Integer are solutions of the congruence.

=3 is a i
to 39:( mod 8), is:: lu::o_r_l ;{:gz cznl;gruence and all solutions congruent
L., T = . : .
congruence. ’ eing an integer are solutions of the -
Similarly, £ = 5, £ = 7 are solutions of the congruence.

| These fqur solutions of the congruence are distinct, because no two
of the solutions are congruent modulo 8 ,

There cannot be more than m distinct solutions of the congruence,
since.there are only m different residue classes. If m is small it is an :
easy job to find all the distinct solutions by direct substitution z =1,
g=2 e T=m— 1. ;

There are many_POints of difference between a polynomial c6ngru¥
ence modulo a positive integer m > 1 and the polynomial equation over
the field of complex numbers.

A congruence may have no solution. For example, the congruence
o? = .3( mod 5) has no solution which can be established by directly

verifying that none of z =0,z =1,z =2,z =3, = 4 satisfies the

congruence. In contrast, a polynomial equation has always a solution.

A congruence may have more distinct solutions than its degree. For
example, the congruence z2 = 1( mod 8) has four distinct solutions
g=1x =3,z =25, z=7. In contrast, a polynomial equation of degree -
m over the complex field has exactly m solutions.

There is an explicit method of solving a congruence of any degree
modulo a positive integer m > 1. [just by substitution of each of the
integers 1,2,...,m — 1, in turn.] But there is no such explicit method

for solving a polynomial equation of degree greater than 4.

- Definition.
A polynomial co

ence. The general for
m > 1is ax = b( mod m), where a # 0( mod m ).

the linear congruence ar = b(

ngruence of degree 1 is said to be a linear congru-
m of a linear congruence modulo a positive integer

An integer c is said to be a solution of
mod m) if ac = b( mod ™).

tion of the linear congruence azr = b

Theorem 3.4.9. If 7; be a solu _
), then z2 is also a solution of the

( mod m) and if z2 = z1( mod m
congruence.

Proof. x; is a solution = a%1 = b( mod m).
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= qx; (mod m
(mod m) = a2 = axy (mod m)
‘o amg = b (mod m) v | |
is a solution of the congruence qz =y
= &3 |

"U‘ZE:UI

Moq m

- i f the congruence az = p( y, I
-, be a solution 0

Note. If @1

: -Gy
+ Am is also a solution for A = 0,£1,£2. ... A]] thege ) then:
1

: lass modulo  and these are yq¢ Sol'lltio |
belong to one residue class e 1o counted :
" different solutions. \

i
Theorem 3.4.10. If ged(a,m) = 1, then the linear COngrey, 4
b(inod m) has a unique solution. ‘ o

. = 1, there exist integers u, v such that
. Since ged(a,m) =1, i a Wty
fT?I(‘)ﬁerefore a(bu) + m(bv) = b. This glves a(bu) = b(mod ™), L As
| This shows that & = bu is a solution of the congruence ar = b(mod
m). - _

Let z1,z2 be solutions of the.congruence gz = b (mod m).
Then az; = b (mod m) and azz = b (mod m). |
This implies az; = axy (mod m) = 21 = @y (moq m)

ged(a,m) = 1. . .
This proves that the congruence has a unique solution.
Note. The solutions are £ = bu + Am, where )\ = 0,1, 42 and

they all belong to one and only one residue class modulo m.

Theorem 3.4.11. If ged(a,m) = d, then the linear congruence gy =
b(mod 7n) has no solution if d is not a divisor of b.

It d be divisor of b, then the linear

congruence ax = b (mod m) has
d incongruent, solutions (mod 1n). '
Proof. Let ax = b (mod m) has a solution 2 = 4, Then au = b (mod
) and this implies m | (b

~ au).

dlm=d| - au). d | a and d | (b - au) = d is a divisor of b.
Contrapositively, d is not a divisor of b implies gz =
solution.

(mod rn) has no

88T U, au = b (mod m) hLolds if and
'2)» by Theoren 3.44,

(& my _ y
o 94d($, ) = 1 ang therefore the con
Just one solutioy 4 -

luence 2q, =
= :L'l( modq %n,) & dt

e

(inod %) bad |

rds; 't_;he solution of the

~the integers ¢ =21 (moq m ), | congruence
4 d

It ¢ assumes the values ()

o

Su= % (mod 3)¥
i le., U=g 4 oy t=0,+1,42,. -
1,2, yd ~ 1, then v assumes d values
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m 2m d—
5511:1;1+ d’$1+ d >w1+s‘dim... (1)
e nOW show thl?,t the 1nteger.s in the list (i) are incongruent modulo
hile each of all other ‘solutlons (corresponding to the values of t
ﬂ;iler than 0,15 »d — 1) is congruent to some one of the integers 1
0 r

) B '
Ld'l = o1+ t‘_,)l;nf (mod m), where 0 < t; < t, < d—1 giﬂves

Lo B

gcd(%’m)z % = 11 = to (mod d) =>d|t2 -1
This is an impossibility, because 0 < ¢, — #; < d.
Thus all solutions in the list (i) are incongruent modulo m.

Let any other solution be z; +1; %, where t; is an integer other than
d— 1.
0: 1’ =l . 1w '
By Divison algorithm we can write t; = qd + r, where ¢ and 7 are
integers and 0 <r<d-1
Then 71 + &7 = T1 + (¢d+ )% =z, + rZ( mod m).
gince 0 <7 < d—1, z1 +1; % is one of the solutions listed in (1)

Thus the congruence ax = b (mod m) has d incongruent solutions

fisted in (i)
This completes the proof.

m

Note. The solutions belong to a single residue class modulo 7
ond this is the union of d distinct residue classes modulo m. The

residue class i modulo Tt is the union of d distinct residue classes

hit i+ m ot L‘%@ modulo m.
| For example, the residue class 1 modulo 5 is the union of the three
- distinet residue classes 1,6, 11 modulo 15.

Worked Examples.
1. Solve the linear congruence 5z = 3 (mod 11).

ged(5,11) = ],./Hence the congruence has a-unique solution.

| Since ged(5;11) = 1, there exist integers u, v such that bu+11v = 1.
?
| Here w = —2,v = 1. Therefore 5.(—2) +11.1 =1 and this implies
L -2) =1 (mod 11). Therefore 5.(—6) = 3 (mod 11).
| Hence « = —6 is a solution.

All solutions are z = —6 (mod 11), Le., T = 5 (mod 11).
c Al the solutions are congruent to 5 (mod 11) and therefore the given
%gruence has a unique solution.
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9. Solve the linear congruence 152 = 9 (mod 18).
ged(15,18) = 3 and 3 | 9. Therefore the given congruence
ruence is equivalent to 5z = 3 (mod 6) % g

solution. The given cong
ged(5,6) = 1. Hence the congruence 5z = 3 (mod 6) has a yp;
solution. i
‘Since ged(5,6) = 1, there exist integers v, u such that 5u + 6y =
Here u = —1.v = 1. Therefore o (=1) + 6.1 = 1 and this i .
. . . - .1l = 1 this imp];
5.(—1) = 1( mod 6). Therefore 5.(—3) = 3 (mnod 6). Hence z = _;p.heS
solution of the congruence 5z = 3 (mod 6). -
There are three incongruent solutions of the given congruence. They
are ¢ = —3, —3 + 6, —3 4+ 12 modulo 18, i.e., z = —3, 3,9 (mod 18) !



